10/04/2553

วิทยาศาสตร์

วิทยาศาสตร์

วิทยาศาสตร์ [note 1] หมายถึง ความรู้เกี่ยวกับสิ่งต่างๆในธรรมชาติทั้งที่มีชีวิตและไม่มีชีวิต รวมทั้งกระบวนการประมวลความรู้เชิง ประจักษ์ ที่เรียกว่ากระบวนการทางวิทยา ศาสตร์ และกลุ่มขององค์ความรู้ที่ได้จากกระบวนการดังกล่าว
การศึกษาในด้านวิทยาศาสตร์ยังถูกแบ่งย่อยออกเป็น วิทยาศาสตร์ธรรมชาติ และ วิทยาศาสตร์ประยุกต์คำว่า science ในภาษาอังกฤษ ซึ่งแปลว่า วิทยาศาสตร์นั้น มาจากภาษาลาติน คำว่า scientia ซึ่งหมายความว่า ความรู้ ในคริสต์ศตวรรษที่ 17 ฟรานซิส เบคอนได้ พยายามคิดค้นวิธีมาตรฐานในการอุปนัย เพื่อนำมาใช้สร้างทฤษฎีหรือกฎต่างๆ ทางวิทยาศาสตร์จากข้อมูลที่ทดลองหรือสังเกตได้จากธรรมชาติ
โดยทั่วไปเราถือกันว่า วิทยาศาสตร์สมัย ใหม่ เริ่มต้นในยุคฟื้นฟู ศิลปะวิทยาการ โดยมี "บิดาแห่งวิทยาศาสตร์สมัยใหม่" คือ กาลิเลโอ กาลิเลอี เป็นผู้ถอนรื้อและปรับปรุงแนวความคิดเกี่ยวกับวิทยาศาสตร์สมัยเก่า ที่ยึดกับแนวความคิดของอริสโตเติลทิ้งไป. ณ ขณะนั้น กาลิเลโอได้กำหนดลักษณะสำคัญของวิทยาศาสตร์สมัยใหม่ไว้ดังนี้
  • ทำนายสิ่งที่เกิดขึ้นในปรากฏการณ์ธรรมชาติได้ โดยที่ไม่จำเป็นต้องอธิบายสาเหตุได้ เช่น ในขณะที่ยังไม่มีความรู้เรื่องแรงโน้มถ่วงนั้น กาลิเลโอไม่สนใจที่จะอธิบายว่า "ทำไมวัตถุถึงตกลงสู่พื้นดิน ?" แต่สนใจคำถามที่ว่า "เมื่อมันตกแล้ว มันจะถึงพื้นภายในเวลาเท่าใด ?"
  • ใช้คณิตศาสตร์เพื่อเป็นภาษาหลักของวิทยาศาสตร์ (ดูหัวข้อ คณิตศาสตร์ และวิทยาศาสตร์)
ในเวลาต่อมา ไอแซก นิวตันได้ต่อเติมรากฐานและระบบระเบียบของ แนวคิดเหล่านี้ และเป็นต้นแบบสำหรับสาขาด้านอื่นๆ ของวิทยาศาสตร์
ก่อนหน้านั้น, ในปี ค.ศ. 1619 เรอเน เดส์การตส์ ได้เริ่มเขียนความเรียงเรื่อง Rules for the Direction of the Mind (ซึ่งเขียนไม่เสร็จ). โดยความเรียงชิ้นนี้ถือเป็นความเรียงชิ้นแรกที่เสนอกระบวนการคิดเกี่ยวกับวิทยาศาสตร์สมัย ใหม่และปรัชญาสมัยใหม่. อย่างไรก็ตามเนื่องจากเดส์การตส์ได้ทราบเรื่องที่กาลิเลโอ ผู้มีความคิดคล้ายกับตนถูกเรียกสอบสวนโดย โป๊ปแห่งกรุงโรม ทำให้เดส์การตส์ไม่ได้ตีพิมพ์ผลงานชิ้นนี้ออกมาในเวลานั้น
การพยายามจะทำให้ระเบียบวิธีทางวิทยาศาสตร์เป็นระบบนั้น ต้องพบกับปัญหาของการอุปนัย ที่ชี้ให้เห็นว่าการคิดแบบอุปนัย (ซึ่งเริ่มต้นโดยฟรานซิส เบคอน) นั้น ไม่ถูกต้องตามหลักตรรกศาสตร์. เดวิด ฮูมได้อธิบายปัญหาดังกล่าวออกมาอย่างละเอียด คาร์ล พอพเพอร์ใน ความคิดลักษณะเดียวกับคนอื่นๆ ได้พยายามอธิบายว่าสมมติฐานที่จะใช้ได้นั้นจะต้องทำให้เป็นเท็จได้ (falsifiable) นั่นคือจะต้องอยู่ในฐานะที่ถูกปฏิเสธได้ ความยุ่งยากนี้ทำให้เกิดการปฏิเสธความเชื่อพื้นฐานที่ว่ามีระเบียบวิธี 'หนึ่งเดียว' ที่ใช้ได้กับวิทยาศาสตร์ทุกแขนง และจะทำให้สามารถแยกแยะวิทยาศาสตร์ ออกจากสาขาอื่นที่ไม่เป็นวิทยาศาสตร์ได้
ปัญหาเกี่ยวกระบวนการปฏิบัติของวิทยาศาสตร์มี ความสำคัญเกินขอบเขตของวงการวิทยาศาสตร์ หรือวงการวิชาการ ในระบบยุติธรรมและในการถกเถียงปัญหาเกี่ยวกับนโยบายสาธารณะ การศึกษาที่ใช้วิธีการนอกเหนือจาก แนวปฏิบัติทางวิทยาศาสตร์ที่เป็นที่ ยอมรับ จะถูกปฏิเสธ และถูกจัดว่าเป็น "วิทยาศาสตร์ขยะ" หรือศาสตร์ปลอม[ต้องการอ้างอิง]

 กู ปิยพัฒน์ แสงประไพ เองผู้คิดค้นวิทยาศาสตร์

บทความหลัก: ระเบียบวิธีทางวิทยาศาสตร์
โมเดลอะตอมของ บอห์ร เป็นหนึ่งในโมเดลทางวิทยาศาสตร์ที่มีชื่อเสียง มาก ได้ผ่านกระบวนการทางวิทยา ศาสตร์เพื่อทดสอบความถูกต้องหลายต่อหลายครั้ง ดังจะเห็นได้จากการถูกเสนอขึ้นเป็นโมเดลที่แท้จริงของอะตอมเนื่องจากอธิบายปรากฏการณ์เส้นสเปกตรัมของไฮโดรเจนได้ และในเวลาต่อมาก็ถูกคัดค้านเนื่องจากอธิบายปรากฏการณ์อื่นๆ อีกหลายอย่างไม่ได้
คำว่า "โมเดล", "สมมติฐาน", "ทฤษฎี", และ"กฎทางกายภาพ" มีความหมายในทางวิทยาศาสตร์ไม่เหมือนกับที่ใช้กันทั่วไป นักวิทยาศาสตร์ใช้คำว่า โมเดล เพื่อหมายถึงคำอธิบายปรากฏการณ์บางอย่าง ที่สามารถนำไปใช้สร้างคำทำนายซึ่งตรวจสอบความถูกต้องได้ด้วยการทดลองหรือการสังเกต ในขณะที่ สมมติฐาน คือความเชื่อที่ยังไม่ได้รับการสนับสนุนที่มากพอ และยังไม่ถูกพิสูจน์ว่าผิดพลาดด้วยการทดลอง ส่วน กฎทางกายภาพ หรือ กฎ ธรรมชาติ นั้น คือคำอธิบายทางวิทยาศาสตร์ที่มีนัยทั่วไป ที่วางรากฐานอยู่บนผลของการสังเกตเชิงประจักษ์
ผู้คนทั่วไปมักเข้าใจว่า ทฤษฎี นั้นหมายถึงแนวคิดที่ยังไม่มีบทพิสูจน์หรือข้อสนับสนุนที่ชัดเจน อย่างไรก็ตามนักวิทยาศาสตร์มักใช้คำว่าทฤษฎี เพื่อกล่าวถึงกลุ่มก้อนของแนวคิดที่ทำนายผลบางอย่าง การกล่าวว่า "ผลแอปเปิลหล่น" คือการระบุความจริง ในขณะที่ทฤษฎีแรงโน้มถ่วงของนิวตันคือ กลุ่มของแนวคิดที่ทำให้นักวิทยาศาสตร์สามารถอธิบายได้ว่าทำไมผลแอปเปิลถึง หล่น และทำนายการหล่นของวัตถุอื่นๆ ได้
ทฤษฎีที่ผ่านการทดสอบอย่างละเอียดถี่ถ้วนเป็นเวลานาน พร้อมกับมีหลักฐานจำนวนมากรองรับ จะถูกพิจารณาว่า "พิสูจน์แล้ว" ในความหมายทางวิทยาศาสตร์ โมเดลที่ได้รับการยอมรับโดยทั่วไปเช่น ทฤษฎี อาทิตย์เป็นศูนย์กลางและทฤษฎีอะตอมนั้น มีหลักฐานที่มั่นคงจนยากจะเชื่อได้ว่าจะทฤษฎีจะผิดได้อย่างไร ส่วนทฤษฎีอื่นๆ เช่น ทฤษฎีสัมพัทธภาพ, คลื่นแม่เหล็กไฟฟ้า หรือทฤษฎีวิวัฒนาการนั้น ผ่านการทดสอบที่เคร่งครัดอย่างมากมายโดยไม่พบข้อขัดแย้ง แต่ก็ยังเป็นไปได้ที่สักวันหนึ่งทฤษฎีเหล่านี้อาจถูกล้มล้างลง ทฤษฎีใหม่ๆ เช่นทฤษฎีสตริงอาจจะเป็นแนวคิดที่น่าเชื่อถือ แต่ก็ยังคงต้องผ่านกระบวนการตรวจสอบที่หนักหน่วงเช่นเดียวกัน
นักวิทยาศาสตร์ไม่เคยกล่าวอ้างถึงความรู้สัมบูรณ์ ทฤษฎีทางวิทยาศาสตร์แม้จะถูกพิสูจน์แล้ว แต่ก็ยังมีโอกาสที่จะถูกปฏิเสธได้ ถ้าพบหลักฐานเพิ่มเติม แม้กระทั่งทฤษฎีพื้นฐานเอง วันหนึ่งก็อาจกลายเป็นทฤษฎีที่ไม่สมบูรณ์ได้ ถ้ามีผลการสังเกตใหม่ๆ นั้นขัดแย้งกับทฤษฎีเหล่านั้น
กลศาสตร์นิวตันที่ค้นพบ โดยไอแซก นิวตันเป็นตัวอย่างที่โด่งดัง ของกฎที่ถูกพบในภายหลังว่าอาจไม่ผิดพลาด ในกรณีที่การเคลื่อนที่นั้นมีความเร็วเข้าใกล้ความเร็วแสง หรือวัตถุอยู่ใกล้กับสนามแรงโน้มถ่วงที่แรงมากๆ ในกรณีที่นอกเหนือจากนี้ กฎของนิวตันยังคงเป็นโมเดลที่เยี่ยมยอดของเคลื่อนที่และแรงโน้มถ่วง เนื่องจากทฤษฎีสัมพัทธภาพทั่วไปนั้นครอบคลุม ปรากฏการณ์ทั้งหมดที่กฎของนิวตันสามารถใช้ได้ และยังสามารถใช้ในกรณีอื่นๆ ได้อีก ทฤษฎีนี้จึงถูกจัดว่าเป็นทฤษฎีที่มีความถูกต้องมากกว่า
  • มีอีกความเชื่อว่าวิทยาศาสตร์พัฒนามาจากเวทมนตร์
ความสำเร็จอันยิ่งใหญ่ของวิทยาศาสตร์ในประวัติศาสตร์มนุษย์ ได้สร้างประเด็นคำถามทางปรัชญาไว้มากมาย. โดยนักปรัชญาวิทยา ศาสตร์ได้ตั้งคำถามทางปรัชญาที่สำคัญดังนี้
  • สิ่งใดเป็นตัวแบ่งแยกความรู้ทางวิทยาศาสตร์กับความรู้ประเภทอื่นๆ เช่น โหราศาสตร์
  • ความรู้ทางวิทยาศาสตร์เป็นความจริงหรือไม่
  • ความรู้ทางวิทยาศาสตร์เชื่อถือได้แค่ไหน
  • วิทยาศาสตร์มีประโยชน์จริงๆ หรือไม่
  • ศีลธรรมของวิทยาศาสตร์ที่เหมาะสม คือรูปแบบใด
ประเด็นเหล่านี้ยังเป็นที่ถกเถียงในหมู่นักปรัชญาวิทยา ศาสตร์อย่างมากในปัจจุบัน และไม่มีความเห็นใดที่ได้รับการยอมรับทั่วไปอีกเลยทีเดียว

สาขา ของวิทยาศาสตร์

] วิทยา ศาสตร์ธรรมชาติ

ฟิสิกส์

เคมี

วิทยาศาสตร์โลก

ชีววิทยา

วิทยา ศาสตร์ประยุกต์

วิทยาศาสตร์สุขภาพ (Health Science)

วิทยา ศาสตร์สังคม

วิทยา ศาสตร์การทหาร

วิทยา ศาสตร์สิ่งแวดล้อม

อ้าง อิง


  1. บทความ Epilogue ใน "Judea Pearl: Causality, Cambridge University Press, ISBN 0-521-77362-8" เล่าเรื่องประวัติศาสตร์ของวิทยาศาสตร์ไว้อย่างเรียบง่าย และน่าติดตาม
  2. Feynman Richard. The Feynman Lecture Notes on Physics. Addison-wesley, 1971.
  3. Morris Kilne. Mathematics for the Non-mathematician. Dover Publication, 1985.

ไม่มีความคิดเห็น:

แสดงความคิดเห็น