10/22/2553

ความชื้น และเสถียรภาพของอากาศ


ความชื้น และเสถียรภาพของอากาศ


          แม้ว่าองค์ประกอบส่วนใหญ่ของบรรยากาศจะเป็น ก๊าซไนโตรเจน และก๊าซออกซิเจน แต่ก๊าซทั้งสองก็มิได้มีอิทธิพลต่อในการเปลี่ยนแปลงสภาพอากาศ ทั้งนี้เนื่องจากก๊าซทั้งสองมีจุดควบแน่น และจุดเยือกแข็งต่ำมาก อุณหภูมิของอากาศมิได้ต่ำพอที่จะทำให้ก๊าซทั้งสองเปลี่ยนสถานะได้ ยกตัวอย่างเช่น หากจะทำให้ก๊าซไนโตรเจนในอากาศเปลี่ยนสถานะเป็นของเหลว อุณหภูมิอากาศจะต้องลดต่ำลงถึง -196°C ซึ่งก็เป็นไปไม่ได้ เนื่องจากโลกอยู่ใกล้ดวงอาทิตย์มากเกินไป
          ในทางตรงข้ามแม้บรรยากาศจะมีไอน้ำอยู่เพียงเล็กน้อยประมาณ 0.1 - 4% แต่ก็มีอิทธิพลทำให้เกิดการเปลี่ยนแปลงสภาพอากาศได้อย่างรุนแรง ทั้งนี้เนื่องจากน้ำในอากาศสามารถเปลี่ยนสถานะกลับไปกลับมาได้ทั้งสามสถานะ เนื่องเพราะอุณหภูมิ ณ จุดควบแน่น และจุดเยือกแข็ง มิได้แตกต่างกันมาก การเปลี่ยนแปลงสถานะของน้ำอาศัยการดูดและคายพลังงาน ซึ่งเป็นกลไกในการขับเคลื่อนให้เกิดการเปลี่ยนแปลงสภาพลมฟ้าอากาศ


การเปลี่ยน สถานะของน้ำ
          ไอน้ำ เป็นน้ำที่อยู่ในสถานะก๊าซ ไอน้ำไม่มีสี ไม่มีกลิ่น น้ำในอากาศสามารถเปลี่ยนจากสถานะหนึ่งไปสู่อีกสถานะหนึ่ง หรือแปรเปลี่ยนกลับไปมาได้ ขึ้นอยู่กับอุณหภูมิและความดันอากาศ การเปลี่ยนสถานะของน้ำมีการดูดกลืนหรือการคายความร้อน โดยที่ไม่ทำให้อุณหภูมิเปลี่ยนแปลง เราเรียกว่า “ความร้อนแฝง” (Latent heat)

ความร้อนแฝงมีหน่วยวัดเป็น แคลอรี
          1 แคลอรี = ปริมาณความร้อนซึ่งทำให้น้ำ 1 กรัม มีอุณหภูมิสูงขึ้น 1°C (ดังนั้นหากเราเพิ่มความร้อน 10 แคลอรี
ให้กับน้ำ 1 กรัม น้ำจะมีอุณหภูมิสูงขึ้น 10°C)




ภาพที่ 1 พลังงานที่ใช้ในการเปลี่ยนสถานะของน้ำ


การหลอมเหลว - การแข็งตัว
          ถ้าเราต้องการให้น้ำแข็งเปลี่ยนสถานะเป็นของเหลว เราจะเพิ่มความร้อนให้แก้วซึ่งบรรจุน้ำแข็ง น้ำแข็งดูดกลืนความร้อนนี้ไว้ โดยยังคงรักษาอุณหภูมิ 0°C คงที่ไม่เปลี่ยนแปลงจนกว่าน้ำแข็งจะละลายหมดก้อน ความร้อนที่ถูกดูดกลืนเข้าไปจะทำลายโครงสร้างผลึกน้ำแข็ง ทำให้น้ำแข็งเปลี่ยนสถานะเป็นของเหลว เราเรียกว่า “การหลอมเหลว” (Melting) ซึ่งต้องการการดูดกลืนความร้อนแฝง 80 แคลอรี/กรัม
          ในทางกลับกัน เมื่อน้ำเปลี่ยนสถานะจากของเหลวกลายเป็นน้ำแข็ง เราเรียกว่า “การแข็งตัว” (Freezing) น้ำจะคายความร้อนแฝงออกมา 80 แคลอรี/กรัม
การระเหย – การควบแน่น
          เมื่อน้ำเปลี่ยนสถานะเป็นไอน้ำ เราเรียกว่า “การระเหย” (Evaporation) ซึ่งต้องการดูดกลืนความร้อนแฝง 600 แคลอรี เพื่อที่จะเปลี่ยน น้ำ 1 กรัมให้กลายเป็นไอน้ำ
ในทางกลับกัน เมื่อไอน้ำกลั่นตัวกลายเป็นหยดน้ำ “การควบแน่น” (Condensation) น้ำจะคายความร้อนแฝงออกมา 600 แคลอรี/กรัม เช่นกัน
การระเหิด – การระเหิดกลับ
          ในบางครั้งน้ำแข็งสามารถเปลี่ยนสถานะเป็นไอน้ำได้โดยตรง โดยที่ไม่จำเป็นต้องละลายเป็นของเหลวแล้วระเหยเป็นก๊าซ การเปลี่ยนสถานะจากของแข็งเป็นก๊าซโดยตรงนี้เราเรียกว่า “การระเหิด” (Sublimation) ซึ่งต้องการดูดกลืนความร้อนแฝง 680 แคลอรี เพื่อที่จะเปลี่ยน น้ำแข็ง 1 กรัมให้กลายเป็นไอน้ำ
          ในทางกลับกัน เมื่อไอน้ำจะเปลี่ยนสถานะเป็นน้ำแข็งโดยตรง เราเรียกว่า “การระเหิดกลับ” (Deposition) ไอน้ำจะคายความร้อนแฝงออกมา 680 แคลอรี/กรัม เช่นกัน


ไอน้ำในอากาศ




ภาพที่ 2 โมเลกุลน้ำในภาชนะ


          หากมีกล้องวิเศษที่สามารถมองถังน้ำ ในภาพที่ 2 ด้วยกำลังขยายหนึ่งพันล้านเท่า เราจะมองเห็นโมเลกุลของน้ำอยู่เบียดเสียด วิ่งไปวิ่งมา โดยที่โมเลกุลแต่ละโมเลกุลเคลื่อนที่ด้วยความเร็วแตกต่างกัน ช้าบ้าง เร็วบ้าง ซึ่งค่าเฉลี่ยของความเร็วในการเคลื่อนที่ของโมเลกุลก็คือ “อุณหภูมิ” ของน้ำ (พลังงานจลน์) ถ้าโมเลกุลที่อยู่บริเวณผิวน้ำมีความเร็วมากพอ ที่จะทำให้โมเลกุลเคลื่อนที่หลุดออกไปสู่อากาศ โมเลกุลเหล่านี้จะเปลี่ยนสถานะจากน้ำเป็นไอน้ำ ซึ่งก็คือ “การระเหย” นั่นเอง
          เมื่อเราปิดฝาถังและดันเข้าไปดังเช่นในภาพขวามือ น้ำที่เคยระเหยเป็นไอน้ำ จะถูกควบแน่นกลับเป็นของเหลวอีกครั้งหนึ่ง หาก “จำนวนโมเลกุลของน้ำที่ ระเหยกลายเป็นไอน้ำ จะเท่ากับจำนวนโมเลกุลของไอน้ำที่ควบแน่นกลับเป็นน้ำพอดี” เราจะเรียกว่า “อากาศอิ่มตัวด้วยไอ น้ำ” ในทางกลับกันหากเราดึงฝาเปิดออก ไอน้ำในอากาศซึ่งเคยอยู่ในถังจะหนีออกมาก ทำให้จำนวนโมเลกุลของไอน้ำที่มีอยู่ในน้อยกว่าจำนวนโมเลกุลของไอน้ำที่ทำให้ อากาศอิ่มตัว อากาศจึงไม่เกิดการอิ่มตัว (ปัจจัยในธรรมชาติที่ช่วยให้อากาศไม่เกิดการอิ่มตัวคือ กระแสลม )
          นอกจากความดันแล้ว ปัจจัยที่มีอิทธิพลต่อการระเหยของน้ำคือ อุณหภูมิ น้ำร้อนระเหยได้ง่ายกว่าน้ำเย็น เนื่องจากความร้อนทำให้โมเลกุลของน้ำเคลื่อนที่เร็วขึ้น และหลุดหนีจากสถานะของเหลวไปเป็นก๊าซ ในทำนองกลับกัน อากาศเย็นทำให้เกิดการควบแน่นได้ดีกว่าอากาศร้อน เนื่องจากโมเลกุลของไอน้ำเย็นมีพลังงานน้อยกว่า จึงสูญเสียความเร็วและเปลี่ยนสถานะเป็นของเหลวได้ง่าย




ภาพที่ 3 กราฟแสดงปริมาณไอน้ำที่ทำให้อากาศ 1 กิโลกรัม เกิดการอิ่มตัว


กราฟในภาพที่ 3 แสดงให้เห็นว่า ปริมาณไอน้ำที่จะทำให้เกิดอากาศอิ่มตัวภายใต้อุณหภูมิต่างๆ เราจะเห็นได้ว่า อุณหภูมิสูงขึ้นทุกๆ 10°C อากาศจะต้องการปริมาณไอน้ำเพิ่มขึ้น 2 เท่า เพื่อทำให้เกิดการอิ่มตัว
          
ณ อุณหภูมิ 10ฐC อากาศ 1 กิโลกรัม ต้องการไอน้ำ 7 กรัม
          
ณ อุณหภูมิ 20ฐC อากาศ 1 กิโลกรัม ต้องการไอน้ำ 14 กรัม
          
ณ อุณหภูมิ 30ฐC อากาศ 1 กิโลกรัม ต้องการไอน้ำ 28 กรัม
เราจึงสรุปได้ว่า “อากาศร้อนมีความ สามารถในการเก็บจำนวนโมเลกุลของไอน้ำได้มากกว่าอากาศเย็น”


ความดันไอน้ำ




ภาพที่ 4 โมเลกุลของก๊าซต่างๆ ในกลุ่มอากาศ


          อากาศมีแรงดันออกทุกทิศทุกทาง ความดันนี้เกิดขึ้นจากการพุ่งชนกันของโมเลกุลของก๊าซ ถ้าสมมติให้กลุ่มอากาศ (Air parcel) ในภาพที่ 4 มีความกดอากาศ 1,000 mb (มิลลิบาร์) มีองค์ประกอบเป็นก๊าซไนโตรเจน 78% ก๊าซออกซิเจน 21% และไอน้ำประมาณ 1% ด้วยสัดส่วนนี้ ก๊าซไนโตรเจนทำให้เกิดแรงดัน 780 mb ก๊าซไนโตรเจนทำให้เกิดแรงดัน 210 mb
และไอน้ำทำให้เกิดแรงดัน 10 mb จะเห็นได้ว่า “ความดันไอน้ำ” (Vapor pressure) มีค่าน้อยมากเมื่อเทียบกับความดันก๊าซทั้งหมด อย่างไรก็ตามหากเราเพิ่มความดันให้กับกลุ่มอากาศ โดยการเพิ่มปริมาณอากาศในลักษณะเดียวกับการเป่าลูกโป่ง “จำนวนโมเลกุลของไอน้ำที่มากขึ้น จะทำให้ความดันไอน้ำมากขึ้นตามไปด้วย” นอกจากนั้นตามกฎของก๊าซ “อุณหภูมิจะ แปรผันตามความดัน” กล่าวคือเมื่อความดันเพิ่มขึ้น อุณหภูมิก็จะเพิ่มตามไปด้วย




ภาพที่ 5 กราฟแสดงความสัมพันธ์ระหว่างความดันไอน้ำอิ่มตัวกับอุณหภูมิ


          กราฟในภาพที่ 5 แสดงความสัมพันธ์ระหว่างความดันไอน้ำอิ่มตัวกับอุณหภูมิของอากาศ
          
ความดันไอน้ำอิ่มตัว 12 มิลลิบาร์ ทำให้อากาศมีอุณหภูมิ 10°C
          
ความดันไอน้ำอิ่มตัว 42 มิลลิบาร์ ทำให้อากาศมีอุณหภูมิ 30°C
          หากมีจำนวนไอน้ำในอากาศมากขึ้น ความดันไอน้ำจะเพิ่มขึ้น และอุณหภูมิของอากาศก็จะสูงตามไปด้วย เราจึงสรุปได้ว่า “อุณหภูมิของอากาศแปรผันตามความดัน ไอน้ำ (ปริมาณของไอน้ำในอากาศ)” และ “อากาศชื้นย่อมจะมีอุณหภูมิสูงกว่าอากาศแห้ง”


ความชื้น
          ความชื้น (Humidity) หมายถึง จำนวนไอน้ำที่มีอยู่ในอากาศ ความชื้นของอากาศมีการเปลี่ยนแปลงอยู่ตลอดเวลา
จะมากหรือน้อย ขึ้นอยู่กับความดัน และอุณหภูมิ
          ความชื้นสัมพัทธ์ (Relativety humidity) หมายถึง “อัตรา ส่วนของปริมาณไอน้ำที่มีอยู่จริงในอากาศ ต่อ ปริมาณไอน้ำที่จะทำให้อากาศอิ่มตัว ณ อุณหภูมิเดียวกัน” หรือ “อัตราส่วนของความดันไอน้ำ ที่มีอยู่จริง ต่อ ความดันไอน้ำอิ่มตัว” ค่าความชื้นสัมพัทธ์แสดงในรูปของร้อยละ (%)




ความชื้นสัมพัทธ์ = (ปริมาณไอน้ำที่อยู่ในอากาศ / ปริมาณไอน้ำที่ทำให้อากาศอิ่มตัว ) x 100%



หรือ




ความชื้นสัมพัทธ์ = (ความดันไอน้ำที่มีอยู่ในอากาศ / ความดันไอน้ำของอากาศอิ่มตัว) x 100%




           ปริมาณของไอน้ำในอากาศขึ้นอยู่กับอุณหภูมิของอากาศ อากาศร้อนสามารถเก็บไอน้ำได้มากกว่า อากาศเย็น ดังนั้นหากเราลดอุณหภูมิของอากาศจนถึงจุดๆ หนึ่ง จะเกิด “อากาศอิ่มตัว” (Saturated air) อากาศไม่สามารถเก็บกักไอน้ำไว้ได้มากกว่านี้ หรือกล่าวได้ว่า อากาศมีความชื้นสัมพัทธ์ 100% ดังนั้นหากอุณหภูมิยังคงลดต่ำลงอีก ไอน้ำจะเปลี่ยนสถานะเป็นของเหลว อุณหภูมิที่ทำให้เกิดการควบแน่นนี้เรียกว่า “จุดน้ำค้าง” (Dew point)




ภาพที่ 6 ความสามารถในการเก็บไอน้ำในอากาศ ณ อุณหภูมิต่างๆ



          จากที่กล่าวมาแล้วในข้างต้น เราสามารถสรุปได้ว่า “จุดน้ำค้างของ อากาศชื้นมีอุณหภูมิสูงกว่าจุดน้ำค้างของอากาศแห้ง” การควบแน่นของไอน้ำในอากาศ ทำให้เกิดการคายความร้อนแฝง ส่งผลให้อากาศโดยรอบมีอุณหภูมิสูงขึ้น เราเรียกการเปลี่ยนแปลงอุณหภูมิ โดยที่ไม่ต้องมีการเพิ่มพลังงานความร้อนจากภายนอกระบบเช่นนี้ว่า “การเปลี่ยนแปลงอุณหภูมิแบบ
อะเดรียแบติก”
(Adiabatic temperature change)


ตัวอย่าง:
          
เมื่อเราใส่น้ำแข็งไว้ในแก้ว จะเกิดละอองน้ำเล็กๆ เกาะอยู่รอบๆ แก้ว ละอองน้ำเหล่านี้เกิดจากอากาศรอบๆ แก้ว มีอุณหภูมิลดต่ำลงจนเกิดการอิ่มตัว และไม่สามารถเก็บไอน้ำได้มากกว่านี้ ไอน้ำจึงควบแน่นเปลี่ยนสถานะเป็นหยดน้ำ
          
ในวันที่มีอากาศหนาว เมื่อเราหายใจออกจะมีควันสีขาว ซึ่งเป็นละอองน้ำเล็กๆ เกิดจากอากาศอบอุ่นภายในร่างกายปะทะกับอากาศเย็นภายนอก ทำให้ไอน้ำซึ่งออกมากับอากาศภายในร่างกาย ควบแน่นกลายเป็นหยดน้ำเล็กๆ มองเห็นเป็นควันสีขาว
          
กาต้มน้ำเดือดพ่นควันสีขาวออกจากพวยกา ควันสีขาวนั้นที่จริงเป็นหยดน้ำเล็กๆ ซึ่งเกิดจาก อากาศร้อนภายในกาพุ่งออกมาปะทะอากาศเย็นภายนอก แล้วเกิดการอิ่มตัว ควบแน่นเป็นละอองน้ำเล็กๆ ทำให้เรามองเห็น (ไอน้ำในสถานะของก๊าซนั้น ไม่มีสี เราไม่สามารถมองเห็นได้)




ภาพที่ 7 สลิงไซโครมิเตอร์ (Sling psychrometer)


          ในการวัดความชื้นสัมพัทธ์ เราใช้เครื่องมือซึ่งเรียกว่า “ไฮ โกรมิเตอร์” (Hygrometer) ซึ่งมีอยู่หลายหลากชนิด มีทั้งทำด้วยกระเปาะเทอร์มอมิเตอร์ และเป็นอุปกรณ์อิเล็กทรอนิกส์ ไฮโกรมิเตอร์ซึ่งสามารถทำได้เองและมีความน่าเชื่อถือเรียกว่า “สลิงไซโครมิเตอร์” (Sling psychrometer) ประกอบด้วยเทอร์มอมิเตอร์จำนวน 2 อันอยู่คู่กัน โดยมีเทอร์มอมิเตอร์อันหนึ่งมีผ้าชุบน้ำหุ้มกระเปาะไว้ เรียกว่า “กระเปาะเปียก” (Wet bulb) ส่วนกระเปาะเทอร์มอมิเตอร์อีกอันหนึ่งไม่ได้หุ้มอะไรไว้ เรียกว่า “กระเปาะแห้ง” (Dry bulb) เมื่อหมุนสลิงไซโครมิเตอร์จับเวลา 3 นาที แล้วอ่านค่าแตกต่างของอุณหภูมิกระเปาะทั้งสองบนตารางเปรียบเทียบ ก็จะได้ค่าความชื้นสัมพัทธ์ มีหน่วยเป็นเปอร์เซ็นต์




ไอน้ำ เป็นน้ำในสถานะก๊าซ ไอน้ำเป็นก๊าซไม่มีสี ไม่มีกลิ่น และมองไม่เห็น
เมฆ ที่เรามองเห็นเป็นหยดน้ำในสถานะของเหลว หรือเกล็ดน้ำแข็งในสถานะของแข็ง



การยกตัวของ อากาศ
          พื้นผิวโลกได้รับความร้อนจากดวงอาทิตย์ ทำให้อากาศซึ่งอยู่บนพื้นผิวมีอุณหภูมิสูงขึ้นและลอยตัวสูงขึ้น เมื่อกลุ่มอากาศร้อนยกตัว ปริมาตรจะเพิ่มขึ้นเนื่องจากความกดอากาศน้อยลง มีผลทำให้อุณหภูมิลดลงด้วยอัตรา 10°C ต่อ 1,000 เมตร จนกระทั่งกลุ่มอากาศมีความอุณหภูมิเท่ากับสิ่งแวดล้อมมันก็จะหยุดลอยตัว และเมื่อกลุ่มอากาศมีอุณหภูมิต่ำกว่าสิ่งแวดล้อม มันก็จะจมตัวลง และมีปริมาตรน้อยลงเนื่องจากความกดอากาศที่เพิ่มขึ้น และส่งผลทำให้อุณหภูมิสูงขึ้นด้วย ดังภาพที่ 8




ภาพที่ 8 เสถียรภาพของอากาศ


          เมื่อกลุ่มอากาศยกตัว ปริมาตรจะเพิ่มขึ้น ทำให้อุณหภูมิลดต่ำลงด้วยอัตรา 10°C ต่อ 1,000 เมตร จะกระทั่งถึงระดับการควบแน่น อากาศจะอิ่มตัวเนื่องจากอุณหภูมิลดต่ำจนถึงจุดน้ำค้าง หากอุณหภูมิยังคงลดต่ำไปอีก ไอน้ำในอากาศจะควบแน่นเปลี่ยนสถานะเป็นหยดน้ำขนาดเล็ก (ซึ่งก็คือเมฆที่เรามองเห็น) และคายความร้อนแฝงออกมา ทำให้อัตราการลดลองของอุณหภูมิเหลือ 5°C ต่อ 1,000 เมตร ดังภาพที่ 9




ภาพที่ 9 การควบแน่นเนื่องจากการยกตัวของอากาศ


          เราจะเห็นได้ว่า “เมฆ” เกิดขึ้นได้ก็ต่อเมื่อมีการยกตัวของอากาศเท่านั้น กลไกที่ทำให้เกิดการเคลื่อนตัวของอากาศ
ในแนวดิ่งเช่นนี้ มี 4 กระบวนการ ดังนี้
          
สภาพภูมิประเทศ เมื่อกระแสลมปะทะภูเขา อากาศถูกบังคับให้ลอยสูงขึ้น (เนื่องจากไม่มีทางออกทางอื่น) จนถึงระดับควบแน่นก็จะกลั่นตัวเป็นหยดน้ำ ดังเราจะเห็นได้ว่า บนยอดเขาสูงมักมีเมฆปกคลุมอยู่ ทำให้บริเวณยอดเขามีความชุ่มชื้นและอุดมไปด้วยป่าไม้ และเมื่อกระแสลมพัดผ่านยอดเขาไป อากาศแห้งที่สูญเสียไอน้ำไป จะจมตัวลงจนมีอุณหภูมิสูงขึ้น ภูมิอากาศบริเวณหลังภูเขาจึงเป็นเขตที่แห้งแล้ง เรียกว่า “เขตเงาฝน” (Rain shadow)




ภาพที่ 10 อากาศยกตัวเนื่องจากสภาพภูมิประเทศ


           แนวปะทะ อากาศร้อนมีความหนาแน่นต่ำกว่าอากาศเย็น เมื่ออากาศร้อนปะทะกับอากาศเย็น อากาศร้อนจะเสยขึ้น และอุณหภูมิลดต่ำลงจนถึงระดับควบแน่น ทำให้เกิดเมฆและฝน ดังเราจะเคยได้ยินข่าวพยากรณ์อากาศที่ว่า ลิ่มความกดอากาศสูง (อากาศเย็น) ปะทะกับลิ่มความกดอากาศต่ำ (อากาศร้อน) ทำให้เกิดพายุฝน




ภาพที่ 11 อากาศยกตัวเนื่องจากแนวปะทะอากาศ


           อากาศบีบตัว เมื่อกระแสลมพัดมาปะทะกัน อากาศจะยกตัวขึ้น ทำให้อุณหภูมิลดต่ำลงจนเกิดอากาศอิ่มตัว ไอน้ำในอากาศควบแน่นเป็นหยดน้ำ กลายเป็นเมฆ




ภาพที่ 12 อากาศยกตัวเนื่องจากอากาศบีบตัว


           การพาความร้อน พื้นผิวของโลกมีความแตกต่างกัน จึงมีการดูดกลืนและคายความร้อนไม่เท่ากัน จึงมีผลทำให้กลุ่มอากาศที่ลอยอยู่เหนือมัน มีอุณหภูมิแตกต่างกันไปด้วย โดยเฉพาะอย่างยิ่งในช่วงฤดูร้อน (ตัวอย่างเช่น กลุ่มอากาศที่ลอยอยู่เหนือพื้นคอนกรีตจะมีอุณหภูมิสูงกว่ากลุ่มอากาศที่ลอย อยู่เหนือพื้นหญ้า) กลุ่มอากาศที่มีอุณหภูมิสูงมีความหนาแน่นน้อยกว่าอากาศในบริเวณโดยรอบ จึงลอยตัวสูงขึ้น
ดังเราจะเห็นว่า ในวันที่มีอากาศร้อน นกเหยี่ยวสามารถลอยตัวอยู่เฉยๆ โดยไม่ต้องขยับปีกเลย




ภาพที่ 13 อากาศยกตัวเนื่องจากการพาความร้อน


เสถียรภาพของ อากาศ


ภาพที 14 เสถียรภาพของอากาศ

          เมื่อกลุ่มอากาศยก ตัว มันจะขยายตัว และมีอุณหภูมิลดต่ำลง ถ้ากลุ่มอากาศมีอุณหภูมิต่ำกว่าสภาวะแวดล้อม มันจะจมตัวกลับสู่ที่เดิม เนื่องจากมีความหนาแน่นกว่าอากาศโดยรอบ เราเรียกสภาวะเช่นนี้ว่า “อากาศมี เสถียรภาพ” (Stable air) ถ้ากลุ่มอากาศยกตัวสูงจนเหนือระดับควบแน่นก็จะเกิดเมฆในแนวราบ และไม่สามารถยกตัวต่อไปได้อีก อากาศมีเสถียรภาพมักเกิดขึ้นในช่วงเวลาที่มีอุณหภูมิต่ำ เช่น เวลาเช้า
          ในวันที่มีอากาศร้อน กลุ่มอากาศจะยกตัวขึ้นอย่างรวดเร็ว แม้จะมีความสูงเลยระดับควบแน่นไปแล้วก็ตาม แต่ก็ยังมีอุณหภูมิสูงกว่าอากาศโดยรอบ จึงลอยตัวสูงขึ้นไปอีก ทำให้เกิดเมฆก่อตัวในแนวตั้ง เช่น เมฆคิวมูลัส เมฆคิวมูโลนิมบัส
เราเรียกสภาวะเช่นนี้ว่า “อากาศไม่ มีเสถียรภาพ” (Unstable air) อากาศไม่มีเสถียรภาพมักเกิดขึ้นในช่วงเวลาที่มีอุณหภูมิสูง เช่น เวลาบ่ายของฤดูร้อน

          หมายเหตุ: การที่เราเห็นฐานของเมฆแบนเรียบเป็นระดับเดียวกันนั้น เป็นเพราะเมื่อกลุ่มอากาศ (ก้อนเมฆ) จมตัวลงต่ำกว่าระดับควบแน่น อากาศด้านล่างมีอุณหภูมิสูงกว่าจุดน้ำค้าง และยังไม่อิ่มตัว ละอองน้ำที่หล่นลงมาจึงระเหยเปลี่ยนในสถานะเป็นก๊าซ (ไอน้ำ) เราจึงมองไม่เห็น


แหล่ง ข้อมูล


http://www.kanta.ac.th



ไม่มีความคิดเห็น:

แสดงความคิดเห็น